Bunches Alexander M Kasprzyk

نویسنده

  • Alexander M Kasprzyk
چکیده

What follows is a summary of a recent paper by Berchtold and Hausen [BH03] in which the language of bunches applied to toric varieties is presented and investigated. I would like to thank Jaros law Wísniewski for drawing this paper to my attention and helping me appreciate the methods described. In order to motivate the definitions, we first present an example in which the weighted projected space P(w1, . . . , wn) is constructed. 1 Motivating Example Take K = Z, n ∈ N, and E = Z with standard basis {e1, . . . , en}. Let γ = Cone {e1, . . . , en} be the first quadrant in EQ. Choose w1, . . . , wn ∈ N and define Q : ei 7→ wi. We have (see Definitions 4 and 5) that Θ = {Q≥0} ⊂ KQ and cov(Θ) = {ρ1, . . . , ρn}, where ρi = Cone ei. Consider the short exact sequence 0 −→ M := ker Q ι ↪→ E Q −→ K −→ 0. (1) Let x = ∑n i=1 aiei ∈ E, then

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Boundary Volume of a Lattice Polytope

For a d-dimensional convex lattice polytope P , a formula for the boundary volume vol(∂P ) is derived in terms of the number of boundary lattice points on the first bd/2c dilations of P . As an application we give a necessary and sufficient condition for a polytope to be reflexive, and derive formulae for the f -vector of a smooth polytope in dimensions 3, 4, and 5. We also give applications to...

متن کامل

Fano Polytopes

Fano polytopes are the convex-geometric objects corresponding to toric Fano varieties. We give a brief survey of classification results for di↵erent classes of Fano polytopes.

متن کامل

Canonical Toric Fano Threefolds

An inductive approach to classifying all toric Fano varieties is given. As an application of this technique, we present a classification of the toric Fano threefolds with at worst canonical singularities. Up to isomorphism, there are 674,688 such varieties.

متن کامل

Small polygons and toric codes

We describe two different approaches to making systematic classifications of plane lattice polygons, and recover the toric codes they generate, over small fields, where these match or exceed the best known minimum distance. This includes a [36, 19, 12]-code over F7 whose minimum distance 12 exceeds that of all previously known codes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003